Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[[diaquabarium(II)]-bis[μ -2-(4-carboxyphenoxy)propionato- $\kappa^{3}O,O':O'$] dihydrate]

Li-Li Kong,^a Shan Gao,^a Li-Hua Huo^a and Seik Weng Ng^{b*}

^aSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 17 October 2007; accepted 21 October 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; disorder in solvent or counterion; R factor = 0.022; wR factor = 0.058; data-to-parameter ratio = 16.0.

In the crystal structure of the polymeric title compound, $\{[Ba(C_{10}H_9O_5)_2(H_2O)_2]\cdot 2H_2O\}_n$, the Ba^{II} atom is *O*,*O*'chelated by the carboxylate end of two 2-(4-carboxyphenoxy)propionate monoanions, and is coordinated by two water molecules. It also interacts with the carboxylate O atom of two adjacent monoanions; these bonds give rise to a chain structure along the *c* axis. Meanwhile, the carboxyl –CO₂H end of the anion interacts with an acceptor site $[O \cdots O =$ 2.608 (2) Å]; this interaction and hydrogen bonding involving the coordinated and lattice water molecules give rise to a three-dimensional network. The eight coordinating O atoms comprise a square-antiprism around the metal atom, which lies on a special position of site symmetry 2.

Related literature

For the strontium derivative of 2-(4-carboxyphenoxy)propionic acid, see: Kong *et al.* (2007).

Experimental

Data collection

```
Rigaku R-AXIS RAPID
diffractometer
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
T_{\rm min} = 0.471, T_{\rm max} = 0.629
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.022$ 12 restraints $wR(F^2) = 0.058$ H-atom parameters constrainedS = 1.05 $\Delta \rho_{max} = 1.34 \text{ e } \text{\AA}^{-3}$ 2754 reflections $\Delta \rho_{min} = -0.40 \text{ e } \text{\AA}^{-3}$ 172 parameters $\Delta \rho_{min} = -0.40 \text{ e } \text{\AA}^{-3}$

11558 measured reflections

 $R_{\rm int} = 0.030$

2754 independent reflections

2684 reflections with $I > 2\sigma(I)$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O5-H51···O2 ⁱ	0.82	1.79	2.608 (2)	174
$O1W-H11\cdots O4^{ii}$	0.82	2.16	2.979 (3)	176
$O1W - H12 \cdots O2W'$	0.82	2.13	2.875 (7)	152
$O2W - H21 \cdots O4^{iii}$	0.82	2.25	2.900 (6)	137
$O2W - H22 \cdots O2W^{iv}$	0.82	2.32	2.881 (14)	126
$O2W - H22 \cdots O2W^{v}$	0.82	2.32	2.742 (17)	113
$O2W - H22 \cdots O2W'^{iv}$	0.82	1.99	2.746 (9)	152
$O2W' - H23 \cdots O4^{iii}$	0.82	2.25	2.885 (7)	134
$O2W' - H24 \cdots O2W^{iv}$	0.82	2.03	2.746 (9)	145

Symmetry codes: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) $x + \frac{1}{2}, y + \frac{1}{2}, z$; (iii) $-x + \frac{1}{2}, -y + \frac{3}{2}, -z$; (iv) -x + 1, -y + 2, -z; (v) $-x + 1, y, -z - \frac{1}{2}$.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2007).

The authors thank the Heilongjiang Province Natural Science Foundation (grant No. B200501), the Scientific Fund for Remarkable Teachers of Heilongjiang Province (grant No. 1054 G036), Heilongjiang University and the University of Malaya for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2487).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

- Kong, L.-L., Gao, S., Huo, L.-H. & Ng, S. W. (2007). Acta Cryst. E63, m2849. Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Westrip, S. P. (2007). publCIF. In preparation.

supplementary materials

Acta Cryst. (2007). E63, m2850 [doi:10.1107/S1600536807052178]

catena-Poly[[[diaquabarium(II)]-bis[μ -2-(4-carboxyphenoxy)propionato- $\kappa^3 O, O': O'$] dihydrate]

L.-L. Kong, S. Gao, L.-H. Huo and S. W. Ng

Comment

This report continues a previous study on the main-group metal derivative of 2-[4-carboxylatophenoxy]propionic acid (Kong *et al.*, 2007). In the present barium compound (Fig. 1), the metal shows irregular square-antiprismatic coordination (Fig. 2).

Experimental

To a suspension of barium carbonate (2 mmol) in water was added 2-(4-carboxylatophenoxy)propionic acid (1 mmol). The mixture was heated to dissolve most of the carbonate; the unchanged reagent was removed by filtration. Colourless crystals separated out after a few days. C&H elemental analysis. Calculated for $C_{20}H_{22}O_{14}Ba$: C 38.51, H 3.56%; found: C 38.52, H 3.55%.

Refinement

The lattice water molecule is disordered over two positions; as the occupancy refined to a nearly 50:50 ratio, the occupancy was fixed as 0.5 each. Carbon- and oxygen-bound H atoms were placed in calculated positions [C—H = 0.93–0.97 Å and $U_{iso}(H) = 1.2-1.5U_{eq}(C)$; O–H = 0.82 Å and $U_{iso}(H) = 1.5U_{eq}(O)$], and were included in the refinement in the riding-model approximation. The final difference Fourier map had large peaks/holes in the vicinity of the barium atom.

Figures

Fig. 1. Part of the polymeric structure of the title compound, showing 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii. The disordered lattice water molecule is not shown. Symmetry codes; (i) 1 - x, y, 1/2 - z; (ii) 1 - x, 1 - y, 1 - z; (iii) x, 1 - y, z - 1/2.

Fig. 2. Square-antiprimastic geometry of Ba.

catena-Poly[[[diaquabarium(II)]-bis[μ -2-(4-carboxyphenoxy)propionato-\ $\kappa^{3}O$,O':O'] dihydrate]

Crystal data [Ba(C₁₀H₉O₅)₂(H₂O)₂]·2H₂O

 $F_{000} = 1256$

$M_r = 627.75$	$D_{\rm x} = 1.715 \ {\rm Mg \ m^{-3}}$
Monoclinic, C2/c	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 11193 reflections
<i>a</i> = 24.5348 (8) Å	$\theta = 3.0-27.5^{\circ}$
b = 13.2964 (4) Å	$\mu = 1.70 \text{ mm}^{-1}$
c = 7.5147 (2) Å	T = 295 (2) K
$\beta = 97.3494 \ (9)^{\circ}$	Prism, colourless
$V = 2431.34 (13) \text{ Å}^3$	$0.38 \times 0.32 \times 0.30 \text{ mm}$
Z = 4	

Data collection

Rigaku R-AXIS RAPID diffractometer	2754 independent reflections
Radiation source: fine-focus sealed tube	2684 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.030$
Detector resolution: 10.000 pixels mm ⁻¹	$\theta_{\text{max}} = 27.4^{\circ}$
T = 295(2) K	$\theta_{\min} = 3.1^{\circ}$
ω scans	$h = -31 \rightarrow 31$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$k = -16 \rightarrow 17$
$T_{\min} = 0.471, \ T_{\max} = 0.629$	$l = -8 \rightarrow 9$
11558 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.022$	H-atom parameters constrained
$wR(F^2) = 0.058$	$w = 1/[\sigma^2(F_o^2) + (0.0386P)^2 + 1.6587P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} = 0.001$
2754 reflections	$\Delta \rho_{max} = 1.34 \text{ e} \text{ Å}^{-3}$
172 parameters	$\Delta \rho_{\rm min} = -0.40 \ e \ {\rm \AA}^{-3}$
12 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Ba1	0.5000	0.602876 (9)	0.2500	0.02394 (7)	
01	0.44439 (6)	0.53508 (11)	0.5434 (2)	0.0362 (3)	
O2	0.39379 (6)	0.62910 (11)	0.34507 (19)	0.0297 (3)	
O3	0.31354 (5)	0.64630 (9)	0.56511 (18)	0.0280 (3)	

O4	0.11457 (8)	0.38322 (13)	0.1840 (3)	0.0499 (5)	
O5	0.17634 (7)	0.26668 (11)	0.2823 (2)	0.0447 (4)	
H51	0.1561	0.2206	0.2426	0.067*	
O1W	0.51164 (8)	0.77491 (13)	0.0446 (3)	0.0548 (4)	
H11	0.5391	0.8060	0.0874	0.082*	
H12	0.4844	0.8107	0.0450	0.082*	
O2W	0.4618 (3)	0.9497 (5)	-0.1321 (11)	0.103 (2)	0.50
H21	0.4457	0.9907	-0.2014	0.155*	0.50
H22	0.4945	0.9641	-0.1136	0.155*	0.50
O2W'	0.4433 (3)	0.9510 (6)	0.0023 (12)	0.112 (2)	0.50
H23	0.4151	0.9849	-0.0095	0.168*	0.50
H24	0.4656	0.9757	0.0807	0.168*	0.50
C1	0.40400 (8)	0.59159 (13)	0.4991 (3)	0.0250 (4)	
C2	0.36759 (8)	0.61791 (14)	0.6437 (3)	0.0267 (4)	
H2	0.3653	0.5601	0.7233	0.032*	
C3	0.39133 (10)	0.70747 (18)	0.7519 (3)	0.0434 (5)	
H3A	0.3697	0.7207	0.8472	0.065*	
H3B	0.3908	0.7653	0.6753	0.065*	
H3C	0.4285	0.6931	0.8017	0.065*	
C4	0.27903 (7)	0.57216 (14)	0.4905 (2)	0.0244 (3)	
C5	0.22872 (9)	0.60562 (12)	0.4031 (3)	0.0305 (4)	
Н5	0.2212	0.6741	0.3946	0.037*	
C6	0.19019 (8)	0.53692 (15)	0.3293 (3)	0.0317 (4)	
H6	0.1566	0.5593	0.2713	0.038*	
C7	0.20121 (8)	0.43396 (14)	0.3409 (2)	0.0282 (4)	
C8	0.25192 (9)	0.40175 (13)	0.4258 (3)	0.0301 (4)	
H8	0.2597	0.3333	0.4323	0.036*	
C9	0.29105 (8)	0.46983 (14)	0.5007 (2)	0.0281 (4)	
Н9	0.3248	0.4475	0.5570	0.034*	
C10	0.15978 (8)	0.36010 (15)	0.2615 (3)	0.0321 (4)	

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.02067 (9)	0.02101 (9)	0.02963 (10)	0.000	0.00124 (6)	0.000
0.0281 (7)	0.0376 (8)	0.0434 (8)	0.0131 (6)	0.0060 (6)	0.0122 (6)
0.0259 (7)	0.0305 (6)	0.0323 (7)	0.0063 (5)	0.0022 (5)	0.0042 (6)
0.0206 (6)	0.0219 (6)	0.0408 (7)	0.0004 (5)	0.0012 (5)	-0.0063 (5)
0.0330 (9)	0.0379 (8)	0.0736 (13)	-0.0037 (7)	-0.0131 (8)	-0.0042 (8)
0.0411 (9)	0.0255 (7)	0.0619 (10)	-0.0062 (6)	-0.0150 (7)	-0.0053 (7)
0.0519 (11)	0.0370 (9)	0.0724 (12)	-0.0018 (7)	-0.0037 (9)	0.0129 (8)
0.079 (4)	0.069 (3)	0.155 (6)	0.015 (3)	-0.018 (4)	0.018 (4)
0.087 (4)	0.094 (4)	0.151 (6)	0.030 (3)	0.003 (4)	0.034 (4)
0.0208 (9)	0.0208 (8)	0.0326 (10)	0.0002 (6)	0.0010 (7)	-0.0004 (6)
0.0223 (9)	0.0269 (8)	0.0304 (9)	-0.0004 (7)	0.0014 (7)	-0.0020(7)
0.0353 (11)	0.0449 (12)	0.0485 (12)	-0.0050 (9)	-0.0001 (9)	-0.0205 (10)
0.0216 (8)	0.0234 (8)	0.0284 (8)	-0.0011 (7)	0.0039 (6)	-0.0033 (7)
0.0266 (10)	0.0232 (9)	0.0407 (11)	0.0036 (6)	-0.0001 (8)	-0.0022 (7)
	U^{11} 0.02067 (9) 0.0281 (7) 0.0259 (7) 0.0206 (6) 0.0330 (9) 0.0411 (9) 0.0519 (11) 0.059 (4) 0.0208 (9) 0.0223 (9) 0.0353 (11) 0.0216 (8) 0.0266 (10)	U^{11} U^{22} 0.02067 (9) 0.02101 (9) 0.0281 (7) 0.0376 (8) 0.0259 (7) 0.0305 (6) 0.0206 (6) 0.0219 (6) 0.0330 (9) 0.0379 (8) 0.0411 (9) 0.0255 (7) 0.0519 (11) 0.0370 (9) 0.079 (4) 0.069 (3) 0.028 (9) 0.0208 (8) 0.0223 (9) 0.0269 (8) 0.0353 (11) 0.0449 (12) 0.0266 (10) 0.0232 (9)	U^{11} U^{22} U^{33} $0.02067 (9)$ $0.02101 (9)$ $0.02963 (10)$ $0.0281 (7)$ $0.0376 (8)$ $0.0434 (8)$ $0.0259 (7)$ $0.0305 (6)$ $0.0323 (7)$ $0.0206 (6)$ $0.0219 (6)$ $0.0408 (7)$ $0.0330 (9)$ $0.0379 (8)$ $0.0736 (13)$ $0.0411 (9)$ $0.0255 (7)$ $0.0619 (10)$ $0.0519 (11)$ $0.0370 (9)$ $0.724 (12)$ $0.079 (4)$ $0.069 (3)$ $0.155 (6)$ $0.0208 (9)$ $0.0208 (8)$ $0.0326 (10)$ $0.0223 (9)$ $0.0269 (8)$ $0.0304 (9)$ $0.0353 (11)$ $0.0449 (12)$ $0.0485 (12)$ $0.0216 (8)$ $0.0232 (9)$ $0.0407 (11)$	U^{11} U^{22} U^{33} U^{12} $0.02067 (9)$ $0.02101 (9)$ $0.02963 (10)$ 0.000 $0.0281 (7)$ $0.0376 (8)$ $0.0434 (8)$ $0.0131 (6)$ $0.0259 (7)$ $0.0305 (6)$ $0.0323 (7)$ $0.0063 (5)$ $0.0206 (6)$ $0.0219 (6)$ $0.0408 (7)$ $0.0004 (5)$ $0.0330 (9)$ $0.0379 (8)$ $0.0736 (13)$ $-0.0037 (7)$ $0.0411 (9)$ $0.0255 (7)$ $0.0619 (10)$ $-0.0062 (6)$ $0.0519 (11)$ $0.0370 (9)$ $0.724 (12)$ $-0.0018 (7)$ $0.079 (4)$ $0.069 (3)$ $0.155 (6)$ $0.015 (3)$ $0.0208 (9)$ $0.0208 (8)$ $0.0326 (10)$ $0.0002 (6)$ $0.0223 (9)$ $0.0269 (8)$ $0.0304 (9)$ $-0.0004 (7)$ $0.0353 (11)$ $0.0449 (12)$ $0.0485 (12)$ $-0.0011 (7)$ $0.0266 (10)$ $0.0232 (9)$ $0.0407 (11)$ $0.0036 (6)$	U^{11} U^{22} U^{33} U^{12} U^{13} $0.02067 (9)$ $0.02101 (9)$ $0.02963 (10)$ 0.000 $0.00124 (6)$ $0.0281 (7)$ $0.0376 (8)$ $0.0434 (8)$ $0.0131 (6)$ $0.0060 (6)$ $0.0259 (7)$ $0.0305 (6)$ $0.0323 (7)$ $0.0063 (5)$ $0.0022 (5)$ $0.0206 (6)$ $0.0219 (6)$ $0.0408 (7)$ $0.0004 (5)$ $0.0012 (5)$ $0.0330 (9)$ $0.0379 (8)$ $0.0736 (13)$ $-0.0037 (7)$ $-0.0131 (8)$ $0.0411 (9)$ $0.0255 (7)$ $0.0619 (10)$ $-0.0062 (6)$ $-0.0150 (7)$ $0.0519 (11)$ $0.0370 (9)$ $0.724 (12)$ $-0.0018 (7)$ $-0.0037 (9)$ $0.079 (4)$ $0.069 (3)$ $0.155 (6)$ $0.015 (3)$ $-0.018 (4)$ $0.087 (4)$ $0.094 (4)$ $0.151 (6)$ $0.030 (3)$ $0.003 (4)$ $0.0223 (9)$ $0.0269 (8)$ $0.0304 (9)$ $-0.0004 (7)$ $0.0014 (7)$ $0.0353 (11)$ $0.0449 (12)$ $0.0485 (12)$ $-0.0050 (9)$ $-0.0001 (9)$ $0.0216 (8)$ $0.0234 (8)$ $0.0284 (8)$ $-0.0011 (7)$ $0.0039 (6)$

supplementary materials

C6	0.0248 (9)	0.0296 (9)	0.0390 (10)	0.0025 (7)	-0.0024 (7)	-0.0031 (8)	
C7	0.0274 (9)	0.0258 (9)	0.0307 (9)	-0.0035 (7)	0.0012 (7)	-0.0030 (7)	
C8	0.0314 (11)	0.0223 (9)	0.0360 (11)	-0.0005 (6)	0.0018 (8)	0.0004 (6)	
C9	0.0238 (8)	0.0253 (8)	0.0342 (9)	0.0016 (7)	-0.0003 (7)	-0.0011 (7)	
C10	0.0296 (10)	0.0304 (10)	0.0354 (10)	-0.0049 (8)	0.0008 (7)	-0.0034 (8)	
Geometric paran	neters (Å, °)						
Ba1—O1		2.882 (1)	O2W	'—H23	0.82		
Ba1—O1 ⁱ		2.882 (1)	O2W	'—H24	0.82		
Ba1—O1 ⁱⁱ		2.664 (1)	C1—	C2	1.533	3 (3)	
Ba1—O1 ⁱⁱⁱ		2.664 (1)	C2—	C3	1.515	5 (3)	
Ba1—O2		2.811 (1)	C2—	H2	0.98		
Ba1—O2 ⁱ		2.811 (1)	C3—	H3A	0.96		
Ba1—O1W		2.794 (2)	C3—	H3B	0.96		
Ba1—O1W ⁱ		2.794 (2)	C3—	НЗС	0.96		
O1—C1		1.254 (2)	C4—	C5	1.395	5 (3)	
O2—C1		1.256 (3)	C4—	С9	1.392	2 (2)	
O3—C4		1.371 (2)	C5—	C6	1.379 (3)		
O3—C2		1.432 (2)	С5—Н5		С5—Н5 0.93		
O4—C10		1.224 (3)	C6—	C7	1.396 (3)		
O5—C10		1.310 (3)	С6—Н6		0.93	0.93	
O5—H51		0.82	C7—C8		1.391 (3)		
O1W—H11		0.82	C7—	C10	1.483	3 (3)	
O1W—H12		0.82	C8—C9		1.380	5 (3)	
O2W—H21		0.82	С8—Н8		0.93		
O2W—H22		0.82	C9—	С9—Н9 0.93			
O1 ⁱⁱⁱ —Ba1—O1 ⁱⁱ	:	92.96 (7)	H23–	O2W'H24	109.5	5	
O1 ¹¹¹ —Ba1—O1W	$\sqrt{1}$	143.59 (5)	01—	C1—O2	122.0	68 (18)	
O1 ⁱⁱ —Ba1—O1W	ri	108.82 (5)	01—	C1—C2	117.4	47 (18)	
O1 ⁱⁱⁱ —Ba1—O1W	V	108.82 (5)	02—	C1—C2	119.8	30 (17)	
O1 ⁱⁱ —Ba1—O1W	r	143.59 (5)	03—	C2—C3	106.0	64 (16)	
O1W ⁱ —Ba1—O1	W	70.11 (9)	03—	C2—C1	111.1	5 (16)	
O1 ⁱⁱⁱ —Ba1—O2 ⁱ		111.08 (4)	С3—	C2—C1	109.9	92 (17)	
O1 ⁱⁱ —Ba1—O2 ⁱ		79.11 (4)	03—	С2—Н2	109.7	7	
O1W ⁱ —Ba1—O2 ⁱ	i	101.68 (5)	C3—	С2—Н2	109.7	7	
O1W—Ba1—O2 ⁱ		66.08 (5)	C1—	С2—Н2	109.7	7	
O1 ⁱⁱⁱ —Ba1—O2		79.11 (4)	C2—	С3—НЗА	109.5	5	
O1 ⁱⁱ —Ba1—O2		111.08 (4)	C2—	С3—Н3В	109.5	5	
O1W ⁱ —Ba1—O2		66.08 (5)	H3A-	—С3—Н3В	109.5	5	
O1W—Ba1—O2		101.68 (5)	C2—	С3—НЗС	109.5	5	
O2 ⁱ —Ba1—O2		165.75 (6)	H3A-	—С3—Н3С	109.5	5	
O1 ⁱⁱⁱ —Ba1—O1 ⁱ		66.17 (5)	H3B-	—С3—Н3С	109.5	5	
O1 ⁱⁱ —Ba1—O1 ⁱ		88.46 (3)	03—	C4—C5	115.2	21 (16)	

O1W ⁱ —Ba1—O1 ⁱ	140.39 (5)	O3—C4—C9	124.37 (17)
O1W—Ba1—O1 ⁱ	75.03 (5)	C5—C4—C9	120.40 (16)
O2 ⁱ —Ba1—O1 ⁱ	45.51 (4)	C6—C5—C4	119.87 (16)
O2—Ba1—O1 ⁱ	141.12 (4)	С6—С5—Н5	120.1
O1 ⁱⁱⁱ —Ba1—O1	88.46 (3)	С4—С5—Н5	120.1
O1 ⁱⁱ —Ba1—O1	66.17 (5)	C5—C6—C7	120.46 (18)
O1W ⁱ —Ba1—O1	75.03 (5)	С5—С6—Н6	119.8
O1W—Ba1—O1	140.39 (5)	С7—С6—Н6	119.8
O2 ⁱ —Ba1—O1	141.12 (4)	C8—C7—C6	119.04 (17)
O2—Ba1—O1	45.51 (4)	C8—C7—C10	120.50 (17)
O1 ⁱ —Ba1—O1	143.54 (6)	C6—C7—C10	120.45 (18)
C1—O1—Ba1 ⁱⁱ	153.58 (13)	C9—C8—C7	121.17 (16)
C1—O1—Ba1	92.59 (12)	С9—С8—Н8	119.4
Ba1 ⁱⁱ —O1—Ba1	113.83 (5)	С7—С8—Н8	119.4
C1—O2—Ba1	95.91 (11)	C8—C9—C4	119.03 (17)
C4—O3—C2	118.03 (14)	С8—С9—Н9	120.5
С10—О5—Н51	120.0	С4—С9—Н9	120.5
Ba1—O1W—H11	109.5	O4—C10—O5	122.92 (19)
Ba1—O1W—H12	109.5	O4—C10—C7	123.91 (19)
H11—O1W—H12	109.5	O5—C10—C7	113.18 (17)
H21—O2W—H22	109.5		
O1 ⁱⁱⁱ —Ba1—O1—C1	-86.03 (10)	Ba1—O2—C1—O1	-19.5 (2)
O1 ⁱⁱ —Ba1—O1—C1	-179.94 (16)	Ba1—O2—C1—C2	158.09 (14)
O1W ⁱ —Ba1—O1—C1	61.17 (12)	C4—O3—C2—C3	-167.01 (16)
O1W—Ba1—O1—C1	32.26 (15)	C4—O3—C2—C1	73.20 (19)
O2 ⁱ —Ba1—O1—C1	151.29 (11)	O1—C1—C2—O3	-156.65 (17)
O2—Ba1—O1—C1	-9.82 (11)	O2—C1—C2—O3	25.7 (2)
O1 ⁱ —Ba1—O1—C1	-130.27 (12)	O1—C1—C2—C3	85.5 (2)
O1 ⁱⁱⁱ —Ba1—O1—Ba1 ⁱⁱ	93.91 (9)	O2—C1—C2—C3	-92.1 (2)
O1 ⁱⁱ —Ba1—O1—Ba1 ⁱⁱ	0.0	C2—O3—C4—C5	-174.86 (17)
O1W ⁱ —Ba1—O1—Ba1 ⁱⁱ	-118.89 (7)	C2—O3—C4—C9	6.3 (3)
O1W—Ba1—O1—Ba1 ⁱⁱ	-147.80 (7)	O3—C4—C5—C6	-177.60 (18)
O2 ⁱ —Ba1—O1—Ba1 ⁱⁱ	-28.77 (10)	C9—C4—C5—C6	1.3 (3)
O2—Ba1—O1—Ba1 ⁱⁱ	170.12 (9)	C4—C5—C6—C7	-0.2 (3)
O1 ⁱ —Ba1—O1—Ba1 ⁱⁱ	49.68 (5)	C5—C6—C7—C8	-1.0 (3)
O1 ⁱⁱⁱ —Ba1—O2—C1	108.52 (12)	C5—C6—C7—C10	-180.0 (2)
O1 ⁱⁱ —Ba1—O2—C1	19.54 (12)	C6—C7—C8—C9	1.0 (3)
O1W ⁱ —Ba1—O2—C1	-82.42 (12)	C10—C7—C8—C9	-179.97 (19)
O1W—Ba1—O2—C1	-144.28 (11)	С7—С8—С9—С4	0.1 (3)
O2 ⁱ —Ba1—O2—C1	-114.53 (11)	03—C4—C9—C8	177.54 (18)
O1 ⁱ —Ba1—O2—C1	135.15 (11)	C5—C4—C9—C8	-1.2 (3)
O1—Ba1—O2—C1	9.85 (10)	C8—C7—C10—O4	-179.5 (2)
Ba1 ⁱⁱ —O1—C1—O2	-161.0 (2)	C6—C7—C10—O4	-0.5 (3)

supplementary materials

Ba1-01-C1-02	18.88 (19)	C8—C7—C10—O5	0.5 (3)
Ba1 ⁱⁱ —O1—C1—C2	21.4 (4)	C6—C7—C10—O5	179.5 (2)
Ba1-01-C1-C2	-158.73 (14)		
Commentations and and (i) and 1 and	-1/2 (ii) $-1/2$ $-1/2$	(111) $1/2$	

Symmetry codes: (i) -x+1, y, -z+1/2; (ii) -x+1, -y+1, -z+1; (iii) x, -y+1, z-1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
O5—H51···O2 ^{iv}	0.82	1.79	2.608 (2)	174
$O1W$ — $H11$ ··· $O4^{v}$	0.82	2.16	2.979 (3)	176
O1W—H12…O2W'	0.82	2.13	2.875 (7)	152
O2W—H21···O4 ^{vi}	0.82	2.25	2.900 (6)	137
O2W—H22···O2W ^{vii}	0.82	2.32	2.881 (14)	126
O2W—H22···O2W ^{viii}	0.82	2.32	2.742 (17)	113
O2W—H22···O2W ^{,vii}	0.82	1.99	2.746 (9)	152
O2W'—H23···O4 ^{vi}	0.82	2.25	2.885 (7)	134
O2W'—H24…O2W ^{vii}	0.82	2.03	2.746 (9)	145

Symmetry codes: (iv) -x+1/2, y-1/2, -z+1/2; (v) x+1/2, y+1/2, z; (vi) -x+1/2, -y+3/2, -z; (vii) -x+1, -y+2, -z; (viii) -x+1, y, -z-1/2.

Fig. 1

Fig. 2